

## **BOOK OF ABSTRACTS**

18<sup>th</sup> International Symposium on

Advances in Technology and Business Potential of New Drug Delivery Systems (28<sup>th</sup> and 29<sup>th</sup> February 2020)

Organised By:
Controlled Release Society
Indian Chapter

Venue Hotel Sahara Star Vile Parle (E) Mumbai



## DESIGN AND CHARACTERIZATION OF GELLAN GUM BASED NASAL MUCOADHESIVE MICROSPHERES OF DONEPEZIL HCI BY SPRAY DRYING TECHNIQUE

Gangane P.<sup>1</sup>, Mahajan N.<sup>1</sup>., Kawtikwar P.<sup>2</sup>
1. DadasahebBalpande College of Pharmacy, Besa, Nagpur (Maharashtra), India- 440037
2. S.N.Institute of Pharmacy, Pusad, Yavatmal, (Maharashtra), India-445204
Email: p.gangane@gmail.com

**Keywords:** Nasal Microspheres, Mucoadhesion, gellan gum, spray drying

**Aim-** The aim of this study was to design, develop and evaluate nasal mucoadhesive microspheres of donepezil HCl by using gellan gum as a natural polymer.

**Objectives-** Themajor objectives of designing mucoadhesive drug delivery system were to reduce nasal mucociliary clearance of the drug, to improve contact time of drug molecule with nasal mucosa, to increase systemic absorption of a drug candidate and to optimize the formulation based on the various evaluation tests.

**Methodology-**In the present study spray drying method was used for the formulation of mucoadhesive microspheres, which produces dry powder particles of controllable particle size, shape, form, moisture content and other specific properties irrespective of dryer capacity and heat sensitivity.

**Results and Discussion-**Drug-Polymer interaction study such as FTIR, DSC and XRD revealed that both the drug and excipients were compatible with each other and no interaction was found in between them. Based on other parameters such as particle size  $14.36 \pm 0.25 \mu m$ , production yield  $23.75 \pm 0.23\%$ , entrapment efficiency  $86.48 \pm 2.13\%$ , drug loading  $35.28 \pm 2.50\%$ , mucoadhesion strength $80.30 \pm 2.10\%$  and swelling index  $0.42 \pm 0.03$  batchG1 was optimized by applying  $3^2$  full factorial design. Batch G1 showed good results for in-vitro drug release i.e.  $93.38 \pm 1.26\%$  at 240 min and 84.92% drug release for ex-vivo permeation study at 240 min.

**Conclusion-**Microscopic observations for histological study indicated that the formulation has no significant effect on the microscopic structure of sheep nasal mucosa.

**References:** 1. Pardeshi C V &Belgamwar V S. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood--brain barrier: an excellent platform for brain targeting. Expert Opin. Drug Deliv. 2013; 10 (7): 957-972.

2. Jain S A, Chauk D S, MahajanH S,TekadeA R. &Gattani S G. Formulation and evaluation of nasal mucoadhesive microspheres of Sumatriptan succinate. Journal of Microencapsulation . 2009; 26 (8): 711-721.

**Acknowledgement-** We are thankful to our department and all other companies, laboratories for providing facilities for research work.